Backpropagation E Redes Neurais – Vol.01

SKU: 9786558423515 Categoria:

Autor Junior, Fabio A. ; Oliveira, Mauri A.

R$269,00

12 em estoque

4x de R$67,25 sem juros

Consulte o frete e o prazo de entrega:

Descrição do produto e informações técnicas

Backpropagation E Redes Neurais – Vol.01

O Livro Backpropagation E Redes Neurais – Vol.01 , trata de, Este Livro descreve de forma detalhada e didática, mostrando passo-a-passo, como fazer o treinamento de uma Rede Neural Artificial usando vários algoritmos e arquiteturas empregadas em Packages e Toolboxes dos principais softwares de Machine Learning. São apresentados diversos exemplos para entender os conceitos e fundamentos da aprendizagem de um neurônio artificial.Background Matemático: como é necessário conhecimento prévio de determinados resultados de cálculo, no Capítulo 2 são apresentados os conceitos de derivada, derivada direcional e o método do gradiente descendente que servem de base para o entendimento do algoritmo de backpropagation.Perceptron: é o primeiro modelo e o mais simples, proposto por Rosenblatt em 1958, usado para representar matematicamente um neurônio. No Capítulo 3 o percetron é explorado e suas limitações são expostas.Perceptrons de Múltiplas Camadas: após vários anos de estagnação, décadas de 1960 e 1970, as RNA voltam a receber atenção com os Perceptrons de Múltiplas Camadas (MLP) treinados com o algoritmo de backpropagation, apresentado no Capítulo 4.Nessa sequência este Livro explora variantes do MLP, sendo examinadas detalhamente as variantes QPROP, RPROP, DELTA-BAR-DELTA e LMBP.Para mostrar que os cálculos correspondem exatamente ao que é programado, os resultados são comparados com importantes funções do MATLAB® e a seguir são mostradas todas as linhas de programação usando comandos do PythonTM.Sumário: Parte 1 – Introdução – Background Matemático e MATLAB – 1 / Capítulo 1 – introdução – 3 / Capítulo 2 – Background Matemático e MATLAB – 15 / Parte 2 – Perceptron – 89 / Capítulo 3 – Perceptron – 91 / Capítulo 4 – Backpropagation e Perceptrons de Múltiplas Camadas MLP – 143 / Capítulo 5 – Quick Propagation QPROP – 205 / Capítulo 6 – Propagação Resiliente RPROP – 255 / Capítulo 7 – Algoritmo de Levenberg- Marquardt e Backpropagation LMBP – 301 / Capítulo 8 – Delta-Bar-Delta DBD – 389 / Apêndice – 465 / Referências bibliográficas – 489

Se tiver alguma dúvida, entre em contato aqui

Peso 0,76 kg
Dimensões 21 × 28 cm
Paginas

524

Idioma

Portugues

Editora

Avaliações

Não há avaliações ainda.

Seja o primeiro a avaliar “Backpropagation E Redes Neurais – Vol.01”

Quem comprou, também gostou!